Stability by Linear Processes

GRANT 1N-61-CP

Problem: To find a quick way to determine if the origin 0 in the CT-D complex plane C within the image of Q under the multilinear function $p(j\omega,q)=f(q)+g(q)j$ for fixed ω .

Notation:

Parameter Space Rⁿ

C

182908

1. A_1, A_2, \ldots in $Q \subset R^n$ are preimages of A_1', A_2', \ldots under $p(j\omega, q)$

 A_1', A_2', \ldots points in **C**

90

2. l_1 edge and l_2 , ... l_n line segments where $l_1 \perp l_2 \ldots \perp l_n$

 l_1', l_2', \ldots, l_n' line segments in C which are images of line segments l_1, l_2, \ldots, l_n respectively from Q.

Without loss of generality, assume that the point (q_1, q_2, \ldots, q_n) and the point $(q_1^+, q_2^-, \ldots, q_n^-)$ are the endpoints of the edge l_1 and the point $A_1 \in l_1$ would be $(q_1, q_2^-, \ldots, q_n^-)$ then the point $(q_1, q_2^-, \ldots, q_n^-)$ and the point $(q_1, q_2^+, q_3^-, \ldots, q_n^-)$ are the endpoint of l_2 and the point $A_2 \in l_2$ is $(q_1, q_2, q_3, \ldots, q_n^-)$. So the point $(q_1, \ldots, q_i^-, q_{i+1}^-, \ldots, q_n^-)$ and the point $(q_1, \ldots, q_i^+, q_{i+1}^-, \ldots, q_n^-)$ are the endpoints of l_i and the point $A_i \in l_i$ is $(q_1, \ldots, q_i, q_{i+1}^-, \ldots, q_n^-)$ and so forth.

Algorithm:

- 1. Map any edge, l_1 , of Q C R^n to the line segment l_1 ' in \mathbb{C} .
- 2. If the line through O and A_i ' is not perpendicular to l_i ' then we are finished.
- 3. Determine the point A_i ' on l_i ' that is closest to 0, if the line through 0 and A_i ' is perpendicular to l_i .
 - a) Once $(q_1^-, q_2^-, \ldots, q_n^-)$ and $(q_1^+, q_2^-, \ldots, q_n^-)$ is mapped to \mathbb{C} , say $f(q_1^{\pm}) = f(q_1^{\pm}, q_2^-, \ldots, q_n^-)$ and $g(q_1^{\pm}) = g(q_1^{\pm}, q_2^-, \ldots, q_n^-)$
 - b) Then the slope

$$m = \frac{g(q_1^-) - g(q_1^+)}{f(q_1^-) - f(q_1^+)}$$

is calculated.

(NASA-CR-194131) STABILITY BY LINEAR PROCESSES (Texas Univ.) 9 p N94-10862

Unclas

c) The closest point A_1' (x,y) to 0 in C is

$$x = \frac{mf(q_1) - q(q_1)}{(m + 1/m)}$$

$$y = -x/m$$

- d) Consider the preimage A_1 of A_1' . It is easy to determine the point A_1 lies on the edge l_1 on Q by linearity.
- 4. Construct the line $l_2 \perp l_1$ through A_1 in Q along with ith axis.
 - a) Since all of the q's are fixed except q_i then the ith coordinate of A_i is founded by
 - $q_i = x all linear factors not containing <math>q_i$ all linear factor containing q_i
- 5. Repeat the process for the lines l_i , i = 3, ..., n as was done for l_2 .

The speed of the algorithm can be determined by examining the best/worst case scenario. The best case is that the first edge tried does not have a perpendicular through 0 which means we exit the algorithm. The worst case is that all of the n-1 directional edges have perpendiculars. This requires n iterations. Therefore the average case requires (n+1)/2 iterations. One iteration includes the following calculations:

- 1. f and g for an edge
- 2. the slope of the line segment in C
- 3. the point (x,y) which is perpendicular to the line through 0
- 4. determining if (x,y) lies within the line segment
- 5. mapping (x,y) to the preimage

Conjecture 1: $p(j\omega,q)$ ϵ Hurwitz \forall q ϵ Q Iff for some i ϵ $\{1,\ldots,n\}$ the line through 0 is not perpendicular to $l_i{}'$

Conjecture 2: $p(j\omega,q) \notin Hurwitz \forall q \in Q \text{ Iff } d_i = ||A_i' - o||, i = 1,...,n \text{ then } d_i > d_{i+1} \text{ for each } i = 1,...,n-1.$

To prove the above conjectures we are considering the following direction.

Lemma 1:

If for all edges of Q map to line segment in C no perpendicular to these segments pass through O, then all line segments $l_{i}{}'$, $i=2,\ldots,n$ do not have a perpendicular through O.

Lemma 2:

Given any line segment l_j in Q parallel jth axis consider all line segments $l_{j+1}{}^k$, $k=1,2,\ldots,n-1$ such that $l_{j+1}{}^k$ along with (j+1) axis then $l_{j+1}{}^k$ are all on the same side of $l_j{}'$.

Lemma 1 has already been proven.

```
Example:
```

```
f(q_1,q_2,q_3,q_4) = q_1 q_2 q_3 q_4 + q_1 + q_3 + q_2 q_3 + 1
g(q_1,q_2,q_3,q_4) = q_1 q_2 q_3 + 2 q_1 + q_2 + q_3 + q_4
1st pass
endpoints (-2, -2, -2, -2)
                                  (-2, -2, -2, 2)
image in C (17,-18)
                                  (-15, -14)

    point (-1.953846,-15.63077 ) inside line segment

2nd pass
(-2, -2, -2, .3692307)
                                  (2,-2,-2,.3692307)
(-1.953846, -15.63077)
                                  (7.953846,8.36923)
1 point ( 3.843794,-1.586797) inside line segment
3rd pass
(.340662, -2, -2, .3692307)
                                 (.340662, -2, 2, .3692307)
(3.843794, -1.586797)
                                 (-1.16247, -.3120933)
\perp point inside (-.1454044 -.5710602 ) inside line segment
4th pass
(.340662, -2, 1.187366, .3692307) (.340662, 2, 1.187366, .3692307)
(-.1454044, -.5710603)
                                  (5.20146, 5.046901)
\perp point inside (.2088863,-.1988064) inside line segment
Then 0 \in Im\{p(s,Q)\}
```

Figure 1a


```
\begin{array}{lll} f\left(q_{1},q_{2},q_{3},q_{4}\right) &= q_{1}q_{2}q_{3}q_{4} + q_{1} + q_{2} + q_{3} + q_{2}q_{3} - 2q_{1}q_{2}q_{3} - 10 \\ g\left(q_{1},q_{2},q_{3},q_{4}\right) &= -q_{1}q_{2}q_{3} + 2q_{1} + q_{2} + q_{3} + q_{4} - q_{2}q_{3} - q_{3}q_{4} + 2 \\ \\ 1st pass \\ endpoints & (-2,-2,-2,-2) & (-2,-2,-2,2) \\ image in & C\left(20,-8\right) & (-12,4) \\ \\ \bot point & (-.1643836,-.4383562) & inside line segment \\ \\ 2nd pass & (-2,-2,-2,.5205479) & (2,-2,-2,.5205479) \\ (-.1643834,-.4383562) & (-19.83562,-8.438356) \\ \bot point & (.1296431,-.31878) & outside line segment \\ \\ Then & O \notin Im\{p(s,Q)\} \end{array}
```

Figure 1b